Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Language
Year range
1.
Journal of Biomedical Engineering ; (6): 458-464, 2023.
Article in Chinese | WPRIM | ID: wpr-981563

ABSTRACT

Sleep staging is the basis for solving sleep problems. There's an upper limit for the classification accuracy of sleep staging models based on single-channel electroencephalogram (EEG) data and features. To address this problem, this paper proposed an automatic sleep staging model that mixes deep convolutional neural network (DCNN) and bi-directional long short-term memory network (BiLSTM). The model used DCNN to automatically learn the time-frequency domain features of EEG signals, and used BiLSTM to extract the temporal features between the data, fully exploiting the feature information contained in the data to improve the accuracy of automatic sleep staging. At the same time, noise reduction techniques and adaptive synthetic sampling were used to reduce the impact of signal noise and unbalanced data sets on model performance. In this paper, experiments were conducted using the Sleep-European Data Format Database Expanded and the Shanghai Mental Health Center Sleep Database, and achieved an overall accuracy rate of 86.9% and 88.9% respectively. When compared with the basic network model, all the experimental results outperformed the basic network, further demonstrating the validity of this paper's model, which can provide a reference for the construction of a home sleep monitoring system based on single-channel EEG signals.


Subject(s)
China , Sleep Stages , Sleep , Electroencephalography , Databases, Factual
2.
Journal of Biomedical Engineering ; (6): 293-300, 2022.
Article in Chinese | WPRIM | ID: wpr-928225

ABSTRACT

In recent years, epileptic seizure detection based on electroencephalogram (EEG) has attracted the widespread attention of the academic. However, it is difficult to collect data from epileptic seizure, and it is easy to cause over fitting phenomenon under the condition of few training data. In order to solve this problem, this paper took the CHB-MIT epilepsy EEG dataset from Boston Children's Hospital as the research object, and applied wavelet transform for data augmentation by setting different wavelet transform scale factors. In addition, by combining deep learning, ensemble learning, transfer learning and other methods, an epilepsy detection method with high accuracy for specific epilepsy patients was proposed under the condition of insufficient learning samples. In test, the wavelet transform scale factors 2, 4 and 8 were set for experimental comparison and verification. When the wavelet scale factor was 8, the average accuracy, average sensitivity and average specificity was 95.47%, 93.89% and 96.48%, respectively. Through comparative experiments with recent relevant literatures, the advantages of the proposed method were verified. Our results might provide reference for the clinical application of epilepsy detection.


Subject(s)
Child , Humans , Algorithms , Deep Learning , Electroencephalography , Epilepsy/diagnosis , Seizures/diagnosis , Signal Processing, Computer-Assisted , Wavelet Analysis
3.
Journal of Biomedical Engineering ; (6): 257-266, 2022.
Article in Chinese | WPRIM | ID: wpr-928221

ABSTRACT

The research shows that personality assessment can be achieved by regression model based on electroencephalogram (EEG). Most of existing researches use event-related potential or power spectral density for personality assessment, which can only represent the brain information of a single region. But some research shows that human cognition is more dependent on the interaction of brain regions. In addition, due to the distribution difference of EEG features among subjects, the trained regression model can not get accurate results of cross subject personality assessment. In order to solve the problem, this research proposes a personality assessment method based on EEG functional connectivity and domain adaption. This research collected EEG data from 45 normal people under different emotional pictures (positive, negative and neutral). Firstly, the coherence of 59 channels in 5 frequency bands was taken as the original feature set. Then the feature-based domain adaptation was used to map the feature to a new feature space. It can reduce the distribution difference between training and test set in the new feature space, so as to reduce the distribution difference between subjects. Finally, the support vector regression model was trained and tested based on the transformed feature set by leave-one-out cross-validation. What's more, this paper compared the methods used in previous researches. The results showed that the method proposed in this paper improved the performance of regression model and obtained better personality assessment results. This research provides a new method for personality assessment.


Subject(s)
Humans , Algorithms , Brain , Electroencephalography/methods , Emotions , Personality Assessment
4.
Journal of Biomedical Engineering ; (6): 364-370, 2019.
Article in Chinese | WPRIM | ID: wpr-774197

ABSTRACT

This study uses mind-control game training to intervene in patients with mild cognitive impairment to improve their cognitive function. In this study, electroencephalogram (EEG) data of 40 participants were collected before and after two training sessions. The continuous complexity of EEG signals was analyzed to assess the status of cognitive function and explore the effect of mind-control game training on the improvement of cognitive function. The results showed that after two training sessions, the continuous complexity of EEG signal of the subject increased (0.012 44 ± 0.000 29, < 0.05) and amplitude of curve fluctuation decreased gradually, indicating that with increase of training times, the continuous complexity increased significantly, the cognitive function of brain improved significantly and state was stable. The results of this paper may show that mind-control game training can improve the status of the brain cognitive function, which may provide support and help for the future intervention of cognitive dysfunction.


Subject(s)
Humans , Brain , Cognition , Cognitive Dysfunction , Therapeutics , Electroencephalography
5.
Journal of Biomedical Engineering ; (6): 350-357, 2018.
Article in Chinese | WPRIM | ID: wpr-687623

ABSTRACT

The phase lock value(PLV) is an effective method to analyze the phase synchronization of the brain, which can effectively separate the phase components of the electroencephalogram (EEG) signal and reflect the influence of the signal intensity on the functional connectivity. However, the traditional locking algorithm only analyzes the phase component of the signal, and can't effectively analyze characteristics of EEG signal. In order to solve this problem, a new algorithm named amplitude locking value (ALV) is proposed. Firstly, the improved algorithm obtained intrinsic mode function using the empirical mode decomposition, which was used as input for Hilbert transformation (HT). Then the instantaneous amplitude was calculated and finally the ALV was calculated. On the basis of ALV, the instantaneous amplitude of EEG signal can be measured between electrodes. The data of 14 subjects under different cognitive tasks were collected and analyzed for the coherence of the brain regions during the arithmetic by the improved method. The results showed that there was a negative correlation between the coherence and cognitive activity, and the central and parietal areas were most sensitive. The quantitative analysis by the ALV method could reflect the real biological information. Correlation analysis based on the ALV provides a new method and idea for the research of synchronism, which offer a foundation for further exploring the brain mode of thinking.

SELECTION OF CITATIONS
SEARCH DETAIL